This paper addresses the temporal sentence grounding (TSG). Although existing methods have made decent achievements in this task, they not only severely rely on abundant video-query paired data for training, but also easily fail into the dataset distribution bias. To alleviate these limitations, we introduce a novel Equivariant Consistency Regulation Learning (ECRL) framework to learn more discriminative query-related frame-wise representations for each video, in a self-supervised manner. Our motivation comes from that the temporal boundary of the query-guided activity should be consistently predicted under various video-level transformations. Concretely, we first design a series of spatio-temporal augmentations on both foreground and background video segments to generate a set of synthetic video samples. In particular, we devise a self-refine module to enhance the completeness and smoothness of the augmented video. Then, we present a novel self-supervised consistency loss (SSCL) applied on the original and augmented videos to capture their invariant query-related semantic by minimizing the KL-divergence between the sequence similarity of two videos and a prior Gaussian distribution of timestamp distance. At last, a shared grounding head is introduced to predict the transform-equivariant query-guided segment boundaries for both the original and augmented videos. Extensive experiments on three challenging datasets (ActivityNet, TACoS, and Charades-STA) demonstrate both effectiveness and efficiency of our proposed ECRL framework.