Understanding emergent abilities, such as in-context learning (ICL) and chain-of-thought (CoT) prompting in large language models (LLMs), is of utmost importance. This importance stems not only from the better utilization of these capabilities across various tasks, but also from the proactive identification and mitigation of potential risks, including concerns of truthfulness, bias, and toxicity, that may arise alongside these capabilities. In this paper, we present a thorough survey on the interpretation and analysis of emergent abilities of LLMs. First, we provide a concise introduction to the background and definition of emergent abilities. Then, we give an overview of advancements from two perspectives: 1) a macro perspective, emphasizing studies on the mechanistic interpretability and delving into the mathematical foundations behind emergent abilities; and 2) a micro-perspective, concerning studies that focus on empirical interpretability by examining factors associated with these abilities. We conclude by highlighting the challenges encountered and suggesting potential avenues for future research. We believe that our work establishes the basis for further exploration into the interpretation of emergent abilities.