This article proposes a novel design for the Pinching Antenna Systems (PASS) and advocates simple yet efficient wireless communications over the `last meter'. First, the potential benefits of PASS are discussed by reviewing an existing prototype. Then, the fundamentals of PASS are introduced, including physical principles, signal models, and communication designs. In contrast to existing multi-antenna systems, PASS brings a novel concept termed \emph{Pinching Beamforming}, which is achieved by dynamically adjusting the positions of PAs. Based on this concept, a couple of practical transmission architectures are proposed for employing PASS, namely non-multiplexing and multiplexing architectures. More particularly, 1) The non-multiplexing architecture is featured by simple baseband signal processing and relies only on the pinching beamforming; while 2) the multiplexing architecture provides enhanced signal manipulation capabilities with joint baseband and pinching beamforming, which is further divided into sub-connected, fully-connected, and phase-shifter-based fully-connected schemes. Furthermore, several emerging scenarios are put forward for integrating PASS into future wireless networks. As a further advance, by demonstrating a few numerical case studies, the significant performance gain of PASS is revealed compared to conventional multi-antenna systems. Finally, several research opportunities and open problems of PASS are highlighted.