ChatGPT and GPT-4 have attracted substantial interest from both academic and industrial circles, owing to their remarkable few-shot (or even zero-shot) ability to handle various tasks. Recent work shows that, after being fine-tuned with a few sets of instruction-driven data, the recently proposed LLM, LLaMa, exhibits an impressive capability to address a broad range of tasks. However, the zero-shot performance of LLMs does not consistently outperform that of models fined-tuned for specific scenarios. To explore whether the capabilities of LLMs can be further enhanced for specific scenarios, we choose the writing-assistance scenario as the testbed, including seven writing tasks. We collect training data for these tasks, reframe them in an instruction-following format, and subsequently refine LLaMa via instruction tuning. Experimental results show that continually fine-tuning LLaMa on writing instruction data significantly improves its ability on writing tasks. We also conduct more experiments and analyses to offer insights for future work on effectively fine-tuning LLaMa for specific scenarios.