In this paper, we present MuLanTTS, the Microsoft end-to-end neural text-to-speech (TTS) system designed for the Blizzard Challenge 2023. About 50 hours of audiobook corpus for French TTS as hub task and another 2 hours of speaker adaptation as spoke task are released to build synthesized voices for different test purposes including sentences, paragraphs, homographs, lists, etc. Building upon DelightfulTTS, we adopt contextual and emotion encoders to adapt the audiobook data to enrich beyond sentences for long-form prosody and dialogue expressiveness. Regarding the recording quality, we also apply denoise algorithms and long audio processing for both corpora. For the hub task, only the 50-hour single speaker data is used for building the TTS system, while for the spoke task, a multi-speaker source model is used for target speaker fine tuning. MuLanTTS achieves mean scores of quality assessment 4.3 and 4.5 in the respective tasks, statistically comparable with natural speech while keeping good similarity according to similarity assessment. The excellent and similarity in this year's new and dense statistical evaluation show the effectiveness of our proposed system in both tasks.