https://github.com/alibaba-mmai-research/MoLo.
Current state-of-the-art approaches for few-shot action recognition achieve promising performance by conducting frame-level matching on learned visual features. However, they generally suffer from two limitations: i) the matching procedure between local frames tends to be inaccurate due to the lack of guidance to force long-range temporal perception; ii) explicit motion learning is usually ignored, leading to partial information loss. To address these issues, we develop a Motion-augmented Long-short Contrastive Learning (MoLo) method that contains two crucial components, including a long-short contrastive objective and a motion autodecoder. Specifically, the long-short contrastive objective is to endow local frame features with long-form temporal awareness by maximizing their agreement with the global token of videos belonging to the same class. The motion autodecoder is a lightweight architecture to reconstruct pixel motions from the differential features, which explicitly embeds the network with motion dynamics. By this means, MoLo can simultaneously learn long-range temporal context and motion cues for comprehensive few-shot matching. To demonstrate the effectiveness, we evaluate MoLo on five standard benchmarks, and the results show that MoLo favorably outperforms recent advanced methods. The source code is available at