https://github.com/EdisonLeeeee/MaskGAE}.
We present masked graph autoencoder (MaskGAE), a self-supervised learning framework for graph-structured data. Different from previous graph autoencoders (GAEs), MaskGAE adopts masked graph modeling (MGM) as a principled pretext task: masking a portion of edges and attempting to reconstruct the missing part with partially visible, unmasked graph structure. To understand whether MGM can help GAEs learn better representations, we provide both theoretical and empirical evidence to justify the benefits of this pretext task. Theoretically, we establish the connections between GAEs and contrastive learning, showing that MGM significantly improves the self-supervised learning scheme of GAEs. Empirically, we conduct extensive experiments on a number of benchmark datasets, demonstrating the superiority of MaskGAE over several state-of-the-arts on both link prediction and node classification tasks. Our code is publicly available at \url{