Recently, unified speech-text models, such as SpeechGPT, VioLA, and AudioPaLM, have achieved remarkable performance on speech tasks. These models convert continuous speech signals into discrete tokens (speech discretization) and merge text and speech tokens into a shared vocabulary. Then they train a single decoder-only Transformer on a mixture of speech tasks. Specifically, all these models utilize Loss Masking on the input speech tokens for the ASR task, which means that these models do not explicitly model the dependency between the speech tokens. In this paper, we attempt to model the sequence of speech tokens in an autoregressive manner like text. However, we find that applying the conventional cross-entropy loss on input speech tokens does not consistently improve the ASR performance over Loss Masking. Therefore, we propose a novel approach denoted Smoothed Label Distillation (SLD), which introduces a KL divergence loss with smoothed labels on the input speech tokens to effectively model speech tokens. Experiments demonstrate that our SLD approach alleviates the limitations of the cross-entropy loss and consistently outperforms Loss Masking for decoder-only Transformer based ASR using different speech discretization methods.