LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to effectively instruct LLMs poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat fragmented optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the capacity of LLMs to produce responses of superior quality compared to baselines. Moreover, LangGPT has proven effective in guiding LLMs to generate high-quality prompts. We have built a community on LangGPT to facilitate the tuition and sharing of prompt design. We also analyzed the ease of use and reusability of LangGPT through a community user survey.