Beamforming design has been widely investigated for integrated sensing and communication (ISAC) systems with full-duplex (FD) sensing and half-duplex (HD) communication. To achieve higher spectral efficiency, in this paper, we extend existing ISAC beamforming design by considering the FD capability for both radar and communication. Specifically, we consider an ISAC system, where the base station (BS) performs target detection and communicates with multiple downlink users and uplink users reusing the same time and frequency resources. We jointly optimize the downlink dual-functional transmit signal and the uplink receive beamformers at the BS and the transmit power at the uplink users. The problem is formulated to minimize the total transmit power of the system while guaranteeing the communication and sensing requirements. The downlink and uplink transmissions are tightly coupled, making the joint optimization challenging. To handle this issue, we first determine the receive beamformers in closed forms with respect to the BS transmit beamforming and the user transmit power and then suggest an iterative solution to the remaining problem. We demonstrate via numerical results that the optimized FD communication-based ISAC leads to power efficiency improvement compared to conventional ISAC with HD communication.