Understanding users' gait preferences of a lower-body exoskeleton requires optimizing over the high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LineCoSpar, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LineCoSpar is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamic stability, while also highlighting inconsistencies in the utility functions underlying different users' gait preferences. This has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation.