Alzheimer's disease (AD) is a progressive neurodegenerative disease and recently attracts extensive attention worldwide. Speech technology is considered a promising solution for the early diagnosis of AD and has been enthusiastically studied. Most recent works concentrate on the use of advanced BERT-like classifiers for AD detection. Input to these classifiers are speech transcripts produced by automatic speech recognition (ASR) models. The major challenge is that the quality of transcription could degrade significantly under complex acoustic conditions in the real world. The detection performance, in consequence, is largely limited. This paper tackles the problem via tailoring and adapting pre-trained neural-network based ASR model for the downstream AD recognition task. Only bottom layers of the ASR model are retained. A simple fully-connected neural network is added on top of the tailored ASR model for classification. The heavy BERT classifier is discarded. The resulting model is light-weight and can be fine-tuned in an end-to-end manner for AD recognition. Our proposed approach takes only raw speech as input, and no extra transcription process is required. The linguistic information of speech is implicitly encoded in the tailored ASR model and contributes to boosting the performance. Experiments show that our proposed approach outperforms the best manual transcript-based RoBERTa by an absolute margin of 4.6% in terms of accuracy. Our best-performing models achieve the accuracy of 83.2% and 78.0% in the long-audio and short-audio competition tracks of the 2021 NCMMSC Alzheimer's Disease Recognition Challenge, respectively.