Multimodal Large Language Models (MLLMs), building upon the powerful Large Language Models (LLMs) with exceptional reasoning and generalization capability, have opened up new avenues for embodied task planning. MLLMs excel in their ability to integrate diverse environmental inputs, such as real-time task progress, visual observations, and open-form language instructions, which are crucial for executable task planning. In this work, we introduce a benchmark with human annotations, EgoPlan-Bench, to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied environments. We evaluate various open-source MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos of human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but also effectively acts as embodied planner in simulations.