https://github.com/wuzhenyusjtu/LPCVC20-VideoTextSpotting.
Unmanned Aerial Vehicles (UAVs) based video text spotting has been extensively used in civil and military domains. UAV's limited battery capacity motivates us to develop an energy-efficient video text spotting solution. In this paper, we first revisit RCNN's crop & resize training strategy and empirically find that it outperforms aligned RoI sampling on a real-world video text dataset captured by UAV. To reduce energy consumption, we further propose a multi-stage image processor that takes videos' redundancy, continuity, and mixed degradation into account. Lastly, the model is pruned and quantized before deployed on Raspberry Pi. Our proposed energy-efficient video text spotting solution, dubbed as E^2VTS, outperforms all previous methods by achieving a competitive tradeoff between energy efficiency and performance. All our codes and pre-trained models are available at