https://github.com/tsinghua-fib-lab/WTG-DVR.
Recommender systems are prone to be misled by biases in the data. Models trained with biased data fail to capture the real interests of users, thus it is critical to alleviate the impact of bias to achieve unbiased recommendation. In this work, we focus on an essential bias in micro-video recommendation, duration bias. Specifically, existing micro-video recommender systems usually consider watch time as the most critical metric, which measures how long a user watches a video. Since videos with longer duration tend to have longer watch time, there exists a kind of duration bias, making longer videos tend to be recommended more against short videos. In this paper, we empirically show that commonly-used metrics are vulnerable to duration bias, making them NOT suitable for evaluating micro-video recommendation. To address it, we further propose an unbiased evaluation metric, called WTG (short for Watch Time Gain). Empirical results reveal that WTG can alleviate duration bias and better measure recommendation performance. Moreover, we design a simple yet effective model named DVR (short for Debiased Video Recommendation) that can provide unbiased recommendation of micro-videos with varying duration, and learn unbiased user preferences via adversarial learning. Extensive experiments based on two real-world datasets demonstrate that DVR successfully eliminates duration bias and significantly improves recommendation performance with over 30% relative progress. Codes and datasets are released at