The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Based on parameter-efficient tuning (PET), existing methods devise the learning module and the selection module to handle the challenges of catastrophic forgetting (CF) and knowledge transfer (KT) in CL. The learning module allocates separate PET blocks for each continually emerged task and the selection module function to choose the correct one for the input at testing time. However, there are limitations in their deigns of both modules and they ignore the potential of aligning the two module to address CF and KT simultaneously. To this end, we propose a novel Dual Attention Framework , to align the PET learning and selection via the Dual Attentive Learning\&Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of DAPT to resist CF and facilitate KT at the same time. Moreover, DAPT exhibits the superiority when we scale it to different model sizes (from 770M to 11B) and unseen tasks.