Recent studies have shown that dense retrieval models, lacking dedicated training data, struggle to perform well across diverse retrieval tasks, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we introduce ControlRetriever, a generic and efficient approach with a parameter isolated architecture, capable of controlling dense retrieval models to directly perform varied retrieval tasks, harnessing the power of instructions that explicitly describe retrieval intents in natural language. Leveraging the foundation of ControlNet, which has proven powerful in text-to-image generation, ControlRetriever imbues different retrieval models with the new capacity of controllable retrieval, all while being guided by task-specific instructions. Furthermore, we propose a novel LLM guided Instruction Synthesizing and Iterative Training strategy, which iteratively tunes ControlRetriever based on extensive automatically-generated retrieval data with diverse instructions by capitalizing the advancement of large language models. Extensive experiments show that in the BEIR benchmark, with only natural language descriptions of specific retrieval intent for each task, ControlRetriever, as a unified multi-task retrieval system without task-specific tuning, significantly outperforms baseline methods designed with task-specific retrievers and also achieves state-of-the-art zero-shot performance.