https://shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.
Generative adversarial networks (GANs) have been a popular deep generative model for real-word applications. Despite many recent efforts on GANs have been contributed, however, mode collapse and instability of GANs are still open problems caused by their adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to generator(s) and discriminators into a unified evolutionary adversarial framework, thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes, and to improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generators and EDiscriminators), evolved by an individual evolutionary algorithm. Additionally, to keep the balance between E-Generators and EDiscriminators, we proposed a Soft Mechanism to cooperate them to conduct effective adversarial training. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets, demonstrate that the proposed CDE-GAN achieves the competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage