Recent research on reinforcement learning has shown that trained agents are vulnerable to maliciously crafted adversarial samples. In this work, we show how adversarial samples against RL agents can be generalised from White-box and Grey-box attacks to a strong Black-box case, namely where the attacker has no knowledge of the agents and their training methods. We use sequence-to-sequence models to predict a single action or a sequence of future actions that a trained agent will make. Our approximation model, based on time-series information from the agent, successfully predicts agents' future actions with consistently above 80% accuracy on a wide range of games and training methods. Second, we find that although such adversarial samples are transferable, they do not outperform random Gaussian noise as a means of reducing the game scores of trained RL agents. This highlights a serious methodological deficiency in previous work on such agents; random jamming should have been taken as the baseline for evaluation. Third, we do find a novel use for adversarial samples in this context: they can be used to trigger a trained agent to misbehave after a specific delay. This appears to be a genuinely new type of attack; it potentially enables an attacker to use devices controlled by RL agents as time bombs.