A large body of NLP research has documented the ways gender biases manifest and amplify within large language models (LLMs), though this research has predominantly operated within a gender binary-centric context. A growing body of work has identified the harmful limitations of this gender-exclusive framing; many LLMs cannot correctly and consistently refer to persons outside the gender binary, especially if they use neopronouns. While data scarcity has been identified as a possible culprit, the precise mechanisms through which it influences LLM misgendering remain underexplored. Our work addresses this gap by studying data scarcity's role in subword tokenization and, consequently, the formation of LLM word representations. We uncover how the Byte-Pair Encoding (BPE) tokenizer, a backbone for many popular LLMs, contributes to neopronoun misgendering through out-of-vocabulary behavior. We introduce pronoun tokenization parity (PTP), a novel approach to reduce LLM neopronoun misgendering by preserving a token's functional structure. We evaluate PTP's efficacy using pronoun consistency-based metrics and a novel syntax-based metric. Through several controlled experiments, finetuning LLMs with PTP improves neopronoun consistency from 14.5% to 58.4%, highlighting the significant role tokenization plays in LLM pronoun consistency.