The expensive annotation cost is notoriously known as a main constraint for the development of the point cloud semantic segmentation technique. In this paper, we propose a novel active learning-based method to tackle this problem. Dubbed SSDR-AL, our method groups the original point clouds into superpoints and selects the most informative and representative ones for label acquisition. We achieve the selection mechanism via a graph reasoning network that considers both the spatial and structural diversity of the superpoints. To deploy SSDR-AL in a more practical scenario, we design a noise aware iterative labeling scheme to confront the "noisy annotation" problem introduced by previous dominant labeling methods in superpoints. Extensive experiments on two point cloud benchmarks demonstrate the effectiveness of SSDR-AL in the semantic segmentation task. Particularly, SSDR-AL significantly outperforms the baseline method when the labeled sets are small, where SSDR-AL requires only $5.7\%$ and $1.9\%$ annotation costs to achieve the performance of $90\%$ fully supervised learning on S3DIS and Semantic3D datasets, respectively.