Existing methods in video action recognition mostly do not distinguish human body from the environment and easily overfit the scenes and objects. In this work, we present a conceptually simple, general and high-performance framework for action recognition in trimmed videos, aiming at person-centric modeling. The method, called Action Machine, takes as inputs the videos cropped by person bounding boxes. It extends the Inflated 3D ConvNet (I3D) by adding a branch for human pose estimation and a 2D CNN for pose-based action recognition, being fast to train and test. Action Machine can benefit from the multi-task training of action recognition and pose estimation, the fusion of predictions from RGB images and poses. On NTU RGB-D, Action Machine achieves the state-of-the-art performance with top-1 accuracies of 97.2% and 94.3% on cross-view and cross-subject respectively. Action Machine also achieves competitive performance on another three smaller action recognition datasets: Northwestern UCLA Multiview Action3D, MSR Daily Activity3D and UTD-MHAD. Code will be made available.