Abstract:Parallel Imaging (PI) is one of the most im-portant and successful developments in accelerating magnetic resonance imaging (MRI). Recently deep learning PI has emerged as an effective technique to accelerate MRI. Nevertheless, most approaches have so far been based image domain. In this work, we propose to explore the k-space domain via robust generative modeling for flexible PI reconstruction, coined weight-k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space strategy are efficiently incorporated for score-based generative model training, resulting in good and robust reconstruction. In addition, WKGM is flexible and thus can synergistically combine various traditional k-space PI models, generating learning-based priors to produce high-fidelity reconstructions. Experimental results on datasets with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results under the well-learned k-space generative prior.
Abstract:Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible. Prior arts including the deep learning models have been devoted to solving the problem of long MRI imaging time. Recently, deep generative models have exhibited great potentials in algorithm robustness and usage flexibility. Nevertheless, no existing such schemes that can be learned or employed directly to the k-space measurement. Furthermore, how do the deep generative models work well in hybrid domain is also worth to be investigated. In this work, by taking advantage of the deep en-ergy-based models, we propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement. Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction and is more stable under different acceleration factors.
Abstract:Purpose: Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image generation tasks, how to take advantage of the self-adversarial cogitation in deep EBMs to boost the performance of Magnetic Resonance Imaging (MRI) reconstruction is still desired. Methods: With the successful application of deep learning in a wide range of MRI reconstruction, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article which takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate for alternative learning a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as image prior. Simultaneously, implicit inference with Langevin dynamics is a unique property of re-construction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Results: Experiment results that imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and does not suffer from mode collapse. Conclusion: Algorithmically, an iterative approach was presented to strengthen EBM training with the gradient of energy network. The robustness and the reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.