Abstract:Machine learning models trained on real-world data often inherit and amplify biases against certain social groups, raising urgent concerns about their deployment at scale. While numerous bias mitigation methods have been proposed, comparing the effectiveness of bias mitigation methods remains difficult due to heterogeneous datasets, inconsistent fairness metrics, isolated evaluation of vision versus multi-modal models, and insufficient hyperparameter tuning that undermines fair comparisons. We introduce NH-Fair, a unified benchmark for fairness without harm that spans both vision models and large vision-language models (LVLMs) under standardized data, metrics, and training protocols, covering supervised and zero-shot regimes. Our key contributions are: (1) a systematic ERM tuning study that identifies training choices with large influence on both utility and disparities, yielding empirically grounded guidelines to help practitioners reduce expensive hyperparameter tuning space in achieving strong fairness and accuracy; (2) evidence that many debiasing methods do not reliably outperform a well-tuned ERM baseline, whereas a composite data-augmentation method consistently delivers parity gains without sacrificing utility, emerging as a promising practical strategy. (3) an analysis showing that while LVLMs achieve higher average accuracy, they still exhibit subgroup disparities, and gains from scaling are typically smaller than those from architectural or training-protocol choices. NH-Fair provides a reproducible, tuning-aware pipeline for rigorous, harm-aware fairness evaluation.
Abstract:Recent Vision-Language Models (e.g., ColPali) enable fine-grained Visual Document Retrieval (VDR) but incur prohibitive index vector size overheads. Training-free pruning solutions (e.g., EOS-attention based methods) can reduce index vector size by approximately 60% without model adaptation, but often underperform random selection in high-compression scenarios (> 80%). Prior research (e.g., Light-ColPali) attributes this to the conclusion that visual token importance is inherently query-dependent, thereby questioning the feasibility of training-free pruning. In this work, we propose Structural Anchor Pruning (SAP), a training-free pruning method that identifies key visual patches from middle layers to achieve high performance compression. We also introduce Oracle Score Retention (OSR) protocol to evaluate how layer-wise information affects compression efficiency. Evaluations on the ViDoRe benchmark demonstrate that SAP reduces index vectors by over 90% while maintaining robust retrieval fidelity, providing a highly scalable solution for Visual RAG. Furthermore, our OSR-based analysis reveals that semantic structural anchor patches persist in the middle layers, unlike traditional pruning solutions that focus on the final layer where structural signals dissipate.
Abstract:Recent advances in image acquisition and scene reconstruction have enabled the generation of high-quality structural urban scene geometry, given sufficient site information. However, current capture techniques often overlook the crucial importance of texture quality, resulting in noticeable visual artifacts in the textured models. In this work, we introduce the urban geometry and texture co-capture problem under limited prior knowledge before a site visit. The only inputs are a 2D building contour map of the target area and a safe flying altitude above the buildings. We propose an innovative aerial path planning framework designed to co-capture images for reconstructing both structured geometry and high-fidelity textures. To evaluate and guide view planning, we introduce a comprehensive texture quality assessment system, including two novel metrics tailored for building facades. Firstly, our method generates high-quality vertical dipping views and horizontal planar views to effectively capture both geometric and textural details. A multi-objective optimization strategy is then proposed to jointly maximize texture fidelity, improve geometric accuracy, and minimize the cost associated with aerial views. Furthermore, we present a sequential path planning algorithm that accounts for texture consistency during image capture. Extensive experiments on large-scale synthetic and real-world urban datasets demonstrate that our approach effectively produces image sets suitable for concurrent geometric and texture reconstruction, enabling the creation of realistic, textured scene proxies at low operational cost.
Abstract:Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.