Abstract:As social changes accelerate, the incidence of psychosomatic disorders has significantly increased, becoming a major challenge in global health issues. This necessitates an innovative knowledge system and analytical methods to aid in diagnosis and treatment. Here, we establish the ontology model and entity types, using the BERT model and LoRA-tuned LLM for named entity recognition, constructing the knowledge graph with 9668 triples. Next, by analyzing the network distances between disease, symptom, and drug modules, it was found that closer network distances among diseases can predict greater similarities in their clinical manifestations, treatment approaches, and psychological mechanisms, and closer distances between symptoms indicate that they are more likely to co-occur. Lastly, by comparing the proximity d and proximity z score, it was shown that symptom-disease pairs in primary diagnostic relationships have a stronger association and are of higher referential value than those in diagnostic relationships. The research results revealed the potential connections between diseases, co-occurring symptoms, and similarities in treatment strategies, providing new perspectives for the diagnosis and treatment of psychosomatic disorders and valuable information for future mental health research and practice.
Abstract:In certain brain volumetric studies, synthetic T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) contrast, derived from quantitative T1 MRI (T1-qMRI), proves highly valuable due to its clear white/gray matter boundaries for brain segmentation. However, generating synthetic MP-RAGE (syn-MP-RAGE) typically requires pairs of high-quality, artifact-free, multi-modality inputs, which can be challenging in retrospective studies, where missing or corrupted data is common. To overcome this limitation, our research explores the feasibility of employing a deep learning-based approach to synthesize syn-MP-RAGE contrast directly from a single channel turbo spin-echo (TSE) input, renowned for its resistance to metal artifacts. We evaluated this deep learning-based synthetic MP-RAGE (DL-Syn-MPR) on 31 non-artifact and 11 metal-artifact subjects. The segmentation results, measured by the Dice Similarity Coefficient (DSC), consistently achieved high agreement (DSC values above 0.83), indicating a strong correlation with reference segmentations, with lower input requirements. Also, no significant difference in segmentation performance was observed between the artifact and non-artifact groups.