Abstract:In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.
Abstract:We propose a non-intrusive, and privacy-preserving occupancy estimation system for smart environments. The proposed scheme uses thermal images to detect the number of people in a given area. The occupancy estimation model is designed using the concepts of intensity-based and motion-based human segmentation. The notion of difference catcher, connected component labeling, noise filter, and memory propagation are utilized to estimate the occupancy number. We use a real dataset to demonstrate the effectiveness of the proposed system.
Abstract:Stack Overflow is one of the most popular Programming Community-based Question Answering (PCQA) websites that has attracted more and more users in recent years. When users raise or inquire questions in Stack Overflow, providing related questions can help them solve problems. Although there are many approaches based on deep learning that can automatically predict the relatedness between questions, those approaches are limited since interaction information between two questions may be lost. In this paper, we adopt the deep learning technique, propose an Attention-based Sentence pair Interaction Model (ASIM) to predict the relatedness between questions on Stack Overflow automatically. We adopt the attention mechanism to capture the semantic interaction information between the questions. Besides, we have pre-trained and released word embeddings specific to the software engineering domain for this task, which may also help other related tasks. The experiment results demonstrate that ASIM has made significant improvement over the baseline approaches in Precision, Recall, and Micro-F1 evaluation metrics, achieving state-of-the-art performance in this task. Our model also performs well in the duplicate question detection task of AskUbuntu, which is a similar but different task, proving its generalization and robustness.