Abstract:Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits. When applied to high-dimensional medical imaging data, a key step is to extract lower-dimensional, yet informative representations of the data as traits. Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS in comparison to typical visual representation learning. In this study, we tackle this problem from the mutual information (MI) perspective by identifying key limitations of existing methods. We introduce a trans-modal learning framework Genetic InfoMax (GIM), including a regularized MI estimator and a novel genetics-informed transformer to address the specific challenges of GWAS. We evaluate GIM on human brain 3D MRI data and establish standardized evaluation protocols to compare it to existing approaches. Our results demonstrate the effectiveness of GIM and a significantly improved performance on GWAS.
Abstract:Deep learning (DL) based predictive models from electronic health records (EHR) deliver impressive performance in many clinical tasks. Large training cohorts, however, are often required to achieve high accuracy, hindering the adoption of DL-based models in scenarios with limited training data size. Recently, bidirectional encoder representations from transformers (BERT) and related models have achieved tremendous successes in the natural language processing domain. The pre-training of BERT on a very large training corpus generates contextualized embeddings that can boost the performance of models trained on smaller datasets. We propose Med-BERT, which adapts the BERT framework for pre-training contextualized embedding models on structured diagnosis data from 28,490,650 patients EHR dataset. Fine-tuning experiments are conducted on two disease-prediction tasks: (1) prediction of heart failure in patients with diabetes and (2) prediction of pancreatic cancer from two clinical databases. Med-BERT substantially improves prediction accuracy, boosting the area under receiver operating characteristics curve (AUC) by 2.02-7.12%. In particular, pre-trained Med-BERT substantially improves the performance of tasks with very small fine-tuning training sets (300-500 samples) boosting the AUC by more than 20% or equivalent to the AUC of 10 times larger training set. We believe that Med-BERT will benefit disease-prediction studies with small local training datasets, reduce data collection expenses, and accelerate the pace of artificial intelligence aided healthcare.