Abstract:This paper addresses the complex issue of one-shot face stylization, focusing on the simultaneous consideration of appearance and structure, where previous methods have fallen short. We explore deformation-aware face stylization that diverges from traditional single-image style reference, opting for a real-style image pair instead. The cornerstone of our method is the utilization of a self-supervised vision transformer, specifically DINO-ViT, to establish a robust and consistent facial structure representation across both real and style domains. Our stylization process begins by adapting the StyleGAN generator to be deformation-aware through the integration of spatial transformers (STN). We then introduce two innovative constraints for generator fine-tuning under the guidance of DINO semantics: i) a directional deformation loss that regulates directional vectors in DINO space, and ii) a relative structural consistency constraint based on DINO token self-similarities, ensuring diverse generation. Additionally, style-mixing is employed to align the color generation with the reference, minimizing inconsistent correspondences. This framework delivers enhanced deformability for general one-shot face stylization, achieving notable efficiency with a fine-tuning duration of approximately 10 minutes. Extensive qualitative and quantitative comparisons demonstrate our superiority over state-of-the-art one-shot face stylization methods. Code is available at https://github.com/zichongc/DoesFS
Abstract:Visual place recognition and simultaneous localization and mapping (SLAM) have recently begun to be used in real-world autonomous navigation tasks like food delivery. Existing datasets for SLAM research are often not representative of in situ operations, leaving a gap between academic research and real-world deployment. In response, this paper presents the Segway DRIVE benchmark, a novel and challenging dataset suite collected by a fleet of Segway delivery robots. Each robot is equipped with a global-shutter fisheye camera, a consumer-grade IMU synced to the camera on chip, two low-cost wheel encoders, and a removable high-precision lidar for generating reference solutions. As they routinely carry out tasks in office buildings and shopping malls while collecting data, the dataset spanning a year is characterized by planar motions, moving pedestrians in scenes, and changing environment and lighting. Such factors typically pose severe challenges and may lead to failures for SLAM algorithms. Moreover, several metrics are proposed to evaluate metric place recognition algorithms. With these metrics, sample SLAM and metric place recognition methods were evaluated on this benchmark. The first release of our benchmark has hundreds of sequences, covering more than 50 km of indoor floors. More data will be added as the robot fleet continues to operate in real life. The benchmark is available at http://drive.segwayrobotics.com/#/dataset/download.