Abstract:Adaptation to various scene configurations and object properties, stability and dexterity in robotic grasping manipulation is far from explored. This work presents an origami-based shape morphing fingertip design to actively tackle the grasping stability and dexterity problems. The proposed fingertip utilizes origami as its skeleton providing degrees of freedom at desired positions and motor-driven four-bar-linkages as its transmission components to achieve a compact size of the fingertip. 3 morphing types that are commonly observed and essential in robotic grasping are studied and validated with geometrical modeling. Experiments including grasping an object with convex point contact to pivot or do pinch grasping, grasped object reorientation, and enveloping grasping with concave fingertip surfaces are implemented to demonstrate the advantages of our fingertip compared to conventional parallel grippers. Multi-functionality on enhancing grasping stability and dexterity via active adaptation given different grasped objects and manipulation tasks are justified. Video is available at youtu.be/jJoJ3xnDdVk/.
Abstract:In essence, successful grasp boils down to correct responses to multiple contact events between fingertips and objects. In most scenarios, tactile sensing is adequate to distinguish contact events. Due to the nature of high dimensionality of tactile information, classifying spatiotemporal tactile signals using conventional model-based methods is difficult. In this work, we propose to predict and classify tactile signal using deep learning methods, seeking to enhance the adaptability of the robotic grasp system to external event changes that may lead to grasping failure. We develop a deep learning framework and collect 6650 tactile image sequences with a vision-based tactile sensor, and the neural network is integrated into a contact-event-based robotic grasping system. In grasping experiments, we achieved 52% increase in terms of object lifting success rate with contact detection, significantly higher robustness under unexpected loads with slip prediction compared with open-loop grasps, demonstrating that integration of the proposed framework into robotic grasping system substantially improves picking success rate and capability to withstand external disturbances.
Abstract:Retrieving rich contact information from robotic tactile sensing has been a challenging, yet significant task for the effective perception of object properties that the robot interacts with. This work is dedicated to developing an algorithm to estimate contact force and torque for vision-based tactile sensors. We first introduce the observation of the contact deformation patterns of hyperelastic materials under ideal single-axial loads in simulation. Then based on the observation, we propose a method of estimating surface forces and torque from the contact deformation vector field with the Helmholtz-Hodge Decomposition (HHD) algorithm. Extensive experiments of calibration and baseline comparison are followed to verify the effectiveness of the proposed method in terms of prediction error and variance. The proposed algorithm is further integrated into a contact force visualization module as well as a closed-loop adaptive grasp force control framework and is shown to be useful in both visualization of contact stability and minimum force grasping task.
Abstract:Tactile sensing is essential to the human perception system, so as to robot. In this paper, we develop a novel optical-based tactile sensor "FingerVision" with effective signal processing algorithms. This sensor is composed of soft skin with embedded marker array bonded to rigid frame, and a web camera with a fisheye lens. While being excited with contact force, the camera tracks the movements of markers and deformation field is obtained. Compared to existing tactile sensors, our sensor features compact footprint, high resolution, and ease of fabrication. Besides, utilizing the deformation field estimation, we propose a slip classification framework based on convolution Long Short Term Memory (convolutional LSTM) networks. The data collection process takes advantage of the human sense of slip, during which human hand holds 12 daily objects, interacts with sensor skin and labels data with a slip or non-slip identity based on human feeling of slip. Our slip classification framework performs high accuracy of 97.62% on the test dataset. It is expected to be capable of enhancing the stability of robot grasping significantly, leading to better contact force control, finer object interaction and more active sensing manipulation.