Abstract:Most of the existing text generative steganographic methods are based on coding the conditional probability distribution of each word during the generation process, and then selecting specific words according to the secret information, so as to achieve information hiding. Such methods have their limitations which may bring potential security risks. Firstly, with the increase of embedding rate, these models will choose words with lower conditional probability, which will reduce the quality of the generated steganographic texts; secondly, they can not control the semantic expression of the final generated steganographic text. This paper proposes a new text generative steganography method which is quietly different from the existing models. We use a Knowledge Graph (KG) to guide the generation of steganographic sentences. On the one hand, we hide the secret information by coding the path in the knowledge graph, but not the conditional probability of each generated word; on the other hand, we can control the semantic expression of the generated steganographic text to a certain extent. The experimental results show that the proposed model can guarantee both the quality of the generated text and its semantic expression, which is a supplement and improvement to the current text generation steganography.
Abstract:Given the increasingly serious air pollution problem, the monitoring of air quality index (AQI) in urban areas has drawn considerable attention. This paper presents ImgSensingNet, a vision guided aerial-ground sensing system, for fine-grained air quality monitoring and forecasting using the fusion of haze images taken by the unmanned-aerial-vehicle (UAV) and the AQI data collected by an on-ground three-dimensional (3D) wireless sensor network (WSN). Specifically, ImgSensingNet first leverages the computer vision technique to tell the AQI scale in different regions from the taken haze images, where haze-relevant features and a deep convolutional neural network (CNN) are designed for direct learning between haze images and corresponding AQI scale. Based on the learnt AQI scale, ImgSensingNet determines whether to wake up on-ground wireless sensors for small-scale AQI monitoring and inference, which can greatly reduce the energy consumption of the system. An entropy-based model is employed for accurate real-time AQI inference at unmeasured locations and future air quality distribution forecasting. We implement and evaluate ImgSensingNet on two university campuses since Feb. 2018, and has collected 17,630 photos and 2.6 millions of AQI data samples. Experimental results confirm that ImgSensingNet can achieve higher inference accuracy while greatly reduce the energy consumption, compared to state-of-the-art AQI monitoring approaches.
Abstract:Driven by the increasingly serious air pollution problem, the monitoring of air quality has gained much attention in both theoretical studies and practical implementations. In this paper, we present the architecture, implementation and optimization of our own air quality sensing system, which provides real-time and fine-grained air quality map of the monitored area. As the major component, the optimization problem of our system is studied in detail. Our objective is to minimize the average joint error of the established real-time air quality map, which involves data inference for the unmeasured data values. A deep Q-learning solution has been proposed for the power control problem to reasonably plan the sensing tasks of the power-limited sensing devices online. A genetic algorithm has been designed for the location selection problem to efficiently find the suitable locations to deploy limited number of sensing devices. The performance of the proposed solutions are evaluated by simulations, showing a significant performance gain when adopting both strategies.
Abstract:As air pollution is becoming the largest environmental health risk, the monitoring of air quality has drawn much attention in both theoretical studies and practical implementations. In this article, we present a real-time, fine-grained and power-efficient air quality monitoring system based on aerial and ground sensing. The architecture of this system consists of four layers: the sensing layer to collect data, the transmission layer to enable bidirectional communications, the processing layer to analyze and process the data, and the presentation layer to provide graphic interface for users. Three major techniques are investigated in our implementation, given by the data processing, the deployment strategy and the power control. For data processing, spacial fitting and short-term prediction are performed to eliminate the influences of the incomplete measurement and the latency of data uploading. The deployment strategies of ground sensing and aerial sensing are investigated to improve the quality of the collected data. The power control is further considered to balance between power consumption and data accuracy. Our implementation has been deployed in Peking University and Xidian University since February 2018, and has collected about 100 thousand effective data samples by June 2018.