Abstract:Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna over a specific area of interest to achieve higher spatial resolution imaging. In this paper, we aim to investigate the realization of SAR imaging for a stationary radar system with the assistance of active reconfigurable intelligent surface (ARIS) mounted on an unmanned aerial vehicle (UAV). As the UAV moves along the stationary trajectory, the ARIS can not only build a high-quality virtual line-of-sight (LoS) propagation path, but its mobility can also effectively create a much larger virtual aperture, which can be utilized to realize a SAR system. In this paper, we first present a range-Doppler (RD) imaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR system. Then, to further improve the SAR imaging performance, we attempt to optimize the reflection coefficients of ARIS to maximize the signal-to-noise ratio (SNR) at the stationary radar receiver under the constraints of ARIS maximum power and amplification factor. An effective algorithm based on fractional programming (FP) and majorization minimization (MM) methods is developed to solve the resulting non-convex problem. Simulation results validate the effectiveness of ARIS-assisted SAR imaging and our proposed RD imaging and ARIS optimization algorithms.
Abstract:Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals \emph{zero} and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper's wiretapping ability.
Abstract:Reconfigurable Intelligent Surfaces (RIS) have been proposed as a revolutionary technology with the potential to address several critical requirements of 6G communication systems. Despite its powerful ability for radio environment reconfiguration, the ``double fading'' effect constricts the practical system performance enhancements due to the significant path loss. A new active RIS architecture has been recently proposed to overcome this challenge. However, existing active RIS studies rely on an ideal amplification model without considering the practical hardware limitation of amplifiers, which may cause performance degradation using such inaccurate active RIS modeling. Motivated by this fact, in this paper we first investigate the amplification principle of typical active RIS and propose a more accurate amplification model based on amplifier hardware characteristics. Then, based on the new amplification model, we propose a novel joint transmit beamforming and RIS reflection beamforming design considering the incident signal power on practical active RIS for multiuser multi-input single-output (MU-MISO) communication system. Fractional programming (FP), majorization minimization (MM) and block coordinate descent (BCD) methods are used to solve for the complex problem. Simulation results indicate the importance of the consideration of practical amplifier hardware characteristics in the joint beamforming designs and demonstrate the effectiveness of the proposed algorithm compared to other benchmarks.