Abstract:This paper addresses the multi-robot pursuit problem for an unknown target, encompassing both target state estimation and pursuit control. First, in state estimation, we focus on using only bearing information, as it is readily available from vision sensors and effective for small, distant targets. Challenges such as instability due to the nonlinearity of bearing measurements and singularities in the two-angle representation are addressed through a proposed uniform bearing-only information filter. This filter integrates multiple 3D bearing measurements, provides a concise formulation, and enhances stability and resilience to target loss caused by limited field of view (FoV). Second, in target pursuit control within complex environments, where challenges such as heterogeneity and limited FoV arise, conventional methods like differential games or Voronoi partitioning often prove inadequate. To address these limitations, we propose a novel multiagent reinforcement learning (MARL) framework, enabling multiple heterogeneous vehicles to search, localize, and follow a target while effectively handling those challenges. Third, to bridge the sim-to-real gap, we propose two key techniques: incorporating adjustable low-level control gains in training to replicate the dynamics of real-world autonomous ground vehicles (AGVs), and proposing spectral-normalized RL algorithms to enhance policy smoothness and robustness. Finally, we demonstrate the successful zero-shot transfer of the MARL controllers to AGVs, validating the effectiveness and practical feasibility of our approach. The accompanying video is available at https://youtu.be/HO7FJyZiJ3E.
Abstract:The capture of flying MAVs (micro aerial vehicles) has garnered increasing research attention due to its intriguing challenges and promising applications. Despite recent advancements, a key limitation of existing work is that capture strategies are often relatively simple and constrained by platform performance. This paper addresses control strategies capable of capturing high-maneuverability targets. The unique challenge of achieving target capture under unstable conditions distinguishes this task from traditional pursuit-evasion and guidance problems. In this study, we transition from larger MAV platforms to a specially designed, compact capture MAV equipped with a custom launching device while maintaining high maneuverability. We explore both time-optimal planning (TOP) and reinforcement learning (RL) methods. Simulations demonstrate that TOP offers highly maneuverable and shorter trajectories, while RL excels in real-time adaptability and stability. Moreover, the RL method has been tested in real-world scenarios, successfully achieving target capture even in unstable states.
Abstract:Although acrobatic flight control has been studied extensively, one key limitation of the existing methods is that they are usually restricted to specific maneuver tasks and cannot change flight pattern parameters online. In this work, we propose a target-and-command-oriented reinforcement learning (TACO) framework, which can handle different maneuver tasks in a unified way and allows online parameter changes. Additionally, we propose a spectral normalization method with input-output rescaling to enhance the policy's temporal and spatial smoothness, independence, and symmetry, thereby overcoming the sim-to-real gap. We validate the TACO approach through extensive simulation and real-world experiments, demonstrating its capability to achieve high-speed circular flights and continuous multi-flips.