Abstract:The capture of flying MAVs (micro aerial vehicles) has garnered increasing research attention due to its intriguing challenges and promising applications. Despite recent advancements, a key limitation of existing work is that capture strategies are often relatively simple and constrained by platform performance. This paper addresses control strategies capable of capturing high-maneuverability targets. The unique challenge of achieving target capture under unstable conditions distinguishes this task from traditional pursuit-evasion and guidance problems. In this study, we transition from larger MAV platforms to a specially designed, compact capture MAV equipped with a custom launching device while maintaining high maneuverability. We explore both time-optimal planning (TOP) and reinforcement learning (RL) methods. Simulations demonstrate that TOP offers highly maneuverable and shorter trajectories, while RL excels in real-time adaptability and stability. Moreover, the RL method has been tested in real-world scenarios, successfully achieving target capture even in unstable states.
Abstract:Intelligent drug delivery trolley is an advanced intelligent drug delivery equipment. Compared with traditional manual drug delivery, it has higher drug delivery efficiency and lower error rate. In this project, an intelligent drug delivery car is designed and manufactured, which can recognize the road route and the room number of the target ward through visual recognition technology. The trolley selects the corresponding route according to the identified room number, accurately transports the drugs to the target ward, and can return to the pharmacy after the drugs are delivered. The intelligent drug delivery car uses DC power supply, and the motor drive module controls two DC motors, which overcomes the problem of excessive deviation of turning angle. The trolley line inspection function uses closed-loop control to improve the accuracy of line inspection and the controllability of trolley speed. The identification of ward number is completed by the camera module with microcontroller, and has the functions of adaptive adjustment of ambient brightness, distortion correction, automatic calibration and so on. The communication between two cooperative drug delivery vehicles is realized by Bluetooth module, which achieves efficient and accurate communication and interaction. Experiments show that the intelligent drug delivery car can accurately identify the room number and plan the route to deliver drugs to the far, middle and near wards, and has the characteristics of fast speed and accurate judgment. In addition, two drug delivery trolleys can cooperate to deliver drugs to the same ward, with high efficiency and high cooperation.