Abstract:The light scattering of multilayer nanoparticles can be solved by Maxwell equations. However, it is difficult to solve the inverse design of multilayer nanoparticles by using the traditional trial-and-error method. Here, we present a method for forward simulation and inverse design of multilayer nanoparticles. We combine the global search ability of genetic algorithm with the local search ability of neural network. First, the genetic algorithm is used to find a suitable solution, and then the neural network is used to fine-tune it. Due to the non-unique relationship between physical structures and optical responses, we first train a forward neural network, and then it is applied to the inverse design of multilayer nanoparticles. Not only here, this method can easily be extended to predict and find the best design parameters for other optical structures.
Abstract:Fourier ptychography is a recently explored imaging method for overcoming the diffraction limit of conventional cameras with applications in microscopy and yielding high-resolution images. In order to splice together low-resolution images taken under different illumination angles of coherent light source, an iterative phase retrieval algorithm is adopted. However, the reconstruction procedure is slow and needs a good many of overlap in the Fourier domain for the continuous recorded low-resolution images and is also worse under system aberrations such as noise or random update sequence. In this paper, we propose a new retrieval algorithm that is based on convolutional neural networks. Once well trained, our model can perform high-quality reconstruction rapidly by using the graphics processing unit. The experiments demonstrate that our model achieves better reconstruction results and is more robust under system aberrations.