Abstract:Complex chemical space and limited knowledge scope with biases holds immense challenge for human scientists, yet in automated materials discovery. Existing intelligent methods relies more on numerical computation, leading to inefficient exploration and results with hard-interpretability. To bridge this gap, we introduce a principles-guided material discovery system powered by language inferential multi-agent system (MAS), namely PriM. Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS, enabling systematic exploration while maintaining scientific rigor. Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value while providing transparent reasoning pathways. This approach develops an automated-and-transparent paradigm for material discovery, with broad implications for rational design of functional materials. Code is publicly available at our \href{https://github.com/amair-lab/PriM}{GitHub}.
Abstract:Emergent-scene safety is the key milestone for fully autonomous driving, and reliable on-time prediction is essential to maintain safety in emergency scenarios. However, these emergency scenarios are long-tailed and hard to collect, which restricts the system from getting reliable predictions. In this paper, we build a new dataset, which aims at the long-term prediction with the inconspicuous state variation in history for the emergency event, named the Extro-Spective Prediction (ESP) problem. Based on the proposed dataset, a flexible feature encoder for ESP is introduced to various prediction methods as a seamless plug-in, and its consistent performance improvement underscores its efficacy. Furthermore, a new metric named clamped temporal error (CTE) is proposed to give a more comprehensive evaluation of prediction performance, especially in time-sensitive emergency events of subseconds. Interestingly, as our ESP features can be described in human-readable language naturally, the application of integrating into ChatGPT also shows huge potential. The ESP-dataset and all benchmarks are released at https://dingrui-wang.github.io/ESP-Dataset/.