Abstract:Predicting future human pose is a fundamental application for machine intelligence, which drives robots to plan their behavior and paths ahead of time to seamlessly accomplish human-robot collaboration in real-world 3D scenarios. Despite encouraging results, existing approaches rarely consider the effects of the external scene on the motion sequence, leading to pronounced artifacts and physical implausibilities in the predictions. To address this limitation, this work introduces a novel multi-modal sense-informed motion prediction approach, which conditions high-fidelity generation on two modal information: external 3D scene, and internal human gaze, and is able to recognize their salience for future human activity. Furthermore, the gaze information is regarded as the human intention, and combined with both motion and scene features, we construct a ternary intention-aware attention to supervise the generation to match where the human wants to reach. Meanwhile, we introduce semantic coherence-aware attention to explicitly distinguish the salient point clouds and the underlying ones, to ensure a reasonable interaction of the generated sequence with the 3D scene. On two real-world benchmarks, the proposed method achieves state-of-the-art performance both in 3D human pose and trajectory prediction.
Abstract:Model reparameterization is a widely accepted technique for improving inference speed without compromising performance. However, current Post-training Quantization (PTQ) methods often lead to significant accuracy degradation when applied to reparameterized models. This is primarily caused by channel-specific and sample-specific outliers, which appear only at specific samples and channels and impact on the selection of quantization parameters. To address this issue, we propose RepAPQ, a novel framework that preserves the accuracy of quantized reparameterization models. Different from previous frameworks using Mean Squared Error (MSE) as a measurement, we utilize Mean Absolute Error (MAE) to mitigate the influence of outliers on quantization parameters. Our framework comprises two main components: Quantization Protecting Reparameterization and Across-block Calibration. For effective calibration, Quantization Protecting Reparameterization combines multiple branches into a single convolution with an affine layer. During training, the affine layer accelerates convergence and amplifies the output of the convolution to better accommodate samples with outliers. Additionally, Across-block Calibration leverages the measurement of stage output as supervision to address the gradient problem introduced by MAE and enhance the interlayer correlation with quantization parameters. Comprehensive experiments demonstrate the effectiveness of RepAPQ across various models and tasks. Our framework outperforms previous methods by approximately 1\% for 8-bit PTQ and 2\% for 6-bit PTQ, showcasing its superior performance. The code is available at \url{https://github.com/ilur98/DLMC-QUANT}.
Abstract:Recently, video text detection, tracking, and recognition in natural scenes are becoming very popular in the computer vision community. However, most existing algorithms and benchmarks focus on common text cases (e.g., normal size, density) and single scenario, while ignoring extreme video text challenges, i.e., dense and small text in various scenarios. In this paper, we establish a video text reading benchmark, named DSText V2, which focuses on Dense and Small text reading challenges in the video with various scenarios. Compared with the previous datasets, the proposed dataset mainly include three new challenges: 1) Dense video texts, a new challenge for video text spotters to track and read. 2) High-proportioned small texts, coupled with the blurriness and distortion in the video, will bring further challenges. 3) Various new scenarios, e.g., Game, Sports, etc. The proposed DSText V2 includes 140 video clips from 7 open scenarios, supporting three tasks, i.e., video text detection (Task 1), video text tracking (Task 2), and end-to-end video text spotting (Task 3). In this article, we describe detailed statistical information of the dataset, tasks, evaluation protocols, and the results summaries. Most importantly, a thorough investigation and analysis targeting three unique challenges derived from our dataset are provided, aiming to provide new insights. Moreover, we hope the benchmark will promise video text research in the community. DSText v2 is built upon DSText v1, which was previously introduced to organize the ICDAR 2023 competition for dense and small video text.
Abstract:Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability. There are two mainstream quantization schemes for LLMs: coarse-grained ($\textit{e.g.,}$ channel-wise) quantization and fine-grained ($\textit{e.g.,}$ group-wise) quantization. Fine-grained quantization has smaller quantization loss, consequently achieving superior performance. However, when applied to weight-activation quantization, it disrupts continuous integer matrix multiplication, leading to inefficient inference. In this paper, we introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed. DSQ dequantizes the fine-grained INT4 weight into coarse-grained INT8 representation and preform matrix multiplication using INT8 kernels. Besides, we develop a two-phase grid search algorithm to simplify the determination of fine-grained and coarse-grained quantization scales. We also devise a percentile clipping schema for smoothing the activation outliers without the need for complex optimization techniques. Experimental results demonstrate that DGQ consistently outperforms prior methods across various LLM architectures and a wide range of tasks. Remarkably, by our implemented efficient CUTLASS kernel, we achieve $\textbf{1.12}$ $\times$ memory reduction and $\textbf{3.24}$ $\times$ speed gains comparing A16W4 implementation. These advancements enable efficient deployment of A8W4 LLMs for real-world applications.
Abstract:Model binarization can significantly compress model size, reduce energy consumption, and accelerate inference through efficient bit-wise operations. Although binarizing convolutional neural networks have been extensively studied, there is little work on exploring binarization on vision Transformers which underpin most recent breakthroughs in visual recognition. To this end, we propose to solve two fundamental challenges to push the horizon of Binary Vision Transformers (BiViT). First, the traditional binary method does not take the long-tailed distribution of softmax attention into consideration, bringing large binarization errors in the attention module. To solve this, we propose Softmax-aware Binarization, which dynamically adapts to the data distribution and reduces the error caused by binarization. Second, to better exploit the information of the pretrained model and restore accuracy, we propose a Cross-layer Binarization scheme and introduce learnable channel-wise scaling factors for weight binarization. The former decouples the binarization of self-attention and MLP to avoid mutual interference while the latter enhances the representation capacity of binarized models. Overall, our method performs favorably against state-of-the-arts by 19.8% on the TinyImageNet dataset. On ImageNet, BiViT achieves a competitive 70.8% Top-1 accuracy over Swin-T model, outperforming the existing SOTA methods by a clear margin.