Abstract:Previous graph neural networks (GNNs) usually assume that the graph data is with clean labels for representation learning, but it is not true in real applications. In this paper, we propose a new multi-teacher distillation method based on bi-level optimization (namely BO-NNC), to conduct noisy node classification on the graph data. Specifically, we first employ multiple self-supervised learning methods to train diverse teacher models, and then aggregate their predictions through a teacher weight matrix. Furthermore, we design a new bi-level optimization strategy to dynamically adjust the teacher weight matrix based on the training progress of the student model. Finally, we design a label improvement module to improve the label quality. Extensive experimental results on real datasets show that our method achieves the best results compared to state-of-the-art methods.
Abstract:Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadvantages of low accuracy and low robustness. In this paper, a neural network algorithm of facial expression recognition based on multimodal data fusion is proposed. The algorithm is based on the multimodal data, and it takes the facial image, the histogram of oriented gradient of the image and the facial landmarks as the input, and establishes CNN, LNN and HNN three sub neural networks to extract data features, using multimodal data feature fusion mechanism to improve the accuracy of facial expression recognition. Experimental results show that, benefiting by the complementarity of multimodal data, the algorithm has a great improvement in accuracy, robustness and detection speed compared with the traditional facial expression recognition algorithm. Especially in the case of partial occlusion, illumination and head posture transformation, the algorithm also shows a high confidence.