Abstract:In this paper, we introduce Trim 3D Gaussian Splatting (TrimGS) to reconstruct accurate 3D geometry from images. Previous arts for geometry reconstruction from 3D Gaussians mainly focus on exploring strong geometry regularization. Instead, from a fresh perspective, we propose to obtain accurate 3D geometry of a scene by Gaussian trimming, which selectively removes the inaccurate geometry while preserving accurate structures. To achieve this, we analyze the contributions of individual 3D Gaussians and propose a contribution-based trimming strategy to remove the redundant or inaccurate Gaussians. Furthermore, our experimental and theoretical analyses reveal that a relatively small Gaussian scale is a non-negligible factor in representing and optimizing the intricate details. Therefore the proposed TrimGS maintains relatively small Gaussian scales. In addition, TrimGS is also compatible with the effective geometry regularization strategies in previous arts. When combined with the original 3DGS and the state-of-the-art 2DGS, TrimGS consistently yields more accurate geometry and higher perceptual quality. Our project page is https://trimgs.github.io
Abstract:Label-efficient LiDAR-based 3D object detection is currently dominated by weakly/semi-supervised methods. Instead of exclusively following one of them, we propose MixSup, a more practical paradigm simultaneously utilizing massive cheap coarse labels and a limited number of accurate labels for Mixed-grained Supervision. We start by observing that point clouds are usually textureless, making it hard to learn semantics. However, point clouds are geometrically rich and scale-invariant to the distances from sensors, making it relatively easy to learn the geometry of objects, such as poses and shapes. Thus, MixSup leverages massive coarse cluster-level labels to learn semantics and a few expensive box-level labels to learn accurate poses and shapes. We redesign the label assignment in mainstream detectors, which allows them seamlessly integrated into MixSup, enabling practicality and universality. We validate its effectiveness in nuScenes, Waymo Open Dataset, and KITTI, employing various detectors. MixSup achieves up to 97.31% of fully supervised performance, using cheap cluster annotations and only 10% box annotations. Furthermore, we propose PointSAM based on the Segment Anything Model for automated coarse labeling, further reducing the annotation burden. The code is available at https://github.com/BraveGroup/PointSAM-for-MixSup.
Abstract:This paper aims for high-performance offline LiDAR-based 3D object detection. We first observe that experienced human annotators annotate objects from a track-centric perspective. They first label the objects with clear shapes in a track, and then leverage the temporal coherence to infer the annotations of obscure objects. Drawing inspiration from this, we propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective. Our method features a bidirectional tracking module and a track-centric learning module. Such a design allows our detector to infer and refine a complete track once the object is detected at a certain moment. We refer to this characteristic as "onCe detecTed, neveR Lost" and name the proposed system CTRL. Extensive experiments demonstrate the remarkable performance of our method, surpassing the human-level annotating accuracy and the previous state-of-the-art methods in the highly competitive Waymo Open Dataset without model ensemble. The code will be made publicly available at https://github.com/tusen-ai/SST.
Abstract:As the perception range of LiDAR expands, LiDAR-based 3D object detection contributes ever-increasingly to the long-range perception in autonomous driving. Mainstream 3D object detectors often build dense feature maps, where the cost is quadratic to the perception range, making them hardly scale up to the long-range settings. To enable efficient long-range detection, we first propose a fully sparse object detector termed FSD. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR groups the points into instances and applies highly-efficient instance-wise feature extraction. The instance-wise grouping sidesteps the issue of the center feature missing, which hinders the design of the fully sparse architecture. To further enjoy the benefit of fully sparse characteristic, we leverage temporal information to remove data redundancy and propose a super sparse detector named FSD++. FSD++ first generates residual points, which indicate the point changes between consecutive frames. The residual points, along with a few previous foreground points, form the super sparse input data, greatly reducing data redundancy and computational overhead. We comprehensively analyze our method on the large-scale Waymo Open Dataset, and state-of-the-art performance is reported. To showcase the superiority of our method in long-range detection, we also conduct experiments on Argoverse 2 Dataset, where the perception range ($200m$) is much larger than Waymo Open Dataset ($75m$). Code is open-sourced at https://github.com/tusen-ai/SST.
Abstract:In recent years, knowledge graph completion methods have been extensively studied, in which graph embedding approaches learn low dimensional representations of entities and relations to predict missing facts. Those models usually view the relation vector as a translation (TransE) or rotation (rotatE and QuatE) between entity pairs, enjoying the advantage of simplicity and efficiency. However, QuatE has two main problems: 1) The model to capture the ability of representation and feature interaction between entities and relations are relatively weak because it only relies on the rigorous calculation of three embedding vectors; 2) Although the model can handle various relation patterns including symmetry, anti-symmetry, inversion and composition, but mapping properties of relations are not to be considered, such as one-to-many, many-to-one, and many-to-many. In this paper, we propose a novel model, QuatDE, with a dynamic mapping strategy to explicitly capture a variety of relational patterns, enhancing the feature interaction capability between elements of the triplet. Our model relies on three extra vectors donated as subject transfer vector, object transfer vector and relation transfer vector. The mapping strategy dynamically selects the transition vectors associated with each triplet, used to adjust the point position of the entity embedding vectors in the quaternion space via Hamilton product. Experiment results show QuatDE achieves state-of-the-art performance on three well-established knowledge graph completion benchmarks. In particular, the MR evaluation has relatively increased by 26% on WN18 and 15% on WN18RR, which proves the generalization of QuatDE.