Abstract:Nowadays, hospitals are ubiquitous and integral to modern society. Patients flow in and out of a veritable whirlwind of paperwork, consultations, and potential inpatient admissions, through an abstracted system that is not without flaws. One of the biggest flaws in the medical system is perhaps an unexpected one: the patient alarm system. One longitudinal study reported an 88.8% rate of false alarms, with other studies reporting numbers of similar magnitudes. These false alarm rates lead to a number of deleterious effects that manifest in a significantly lower standard of care across clinics. This paper discusses a model-based probabilistic inference approach to identifying variables at a detection level. We design a generative model that complies with an overview of human physiology and perform approximate Bayesian inference. One primary goal of this paper is to justify a Bayesian modeling approach to increasing robustness in a physiological domain. We use three data sets provided by Physionet, a research resource for complex physiological signals, in the form of the Physionet 2014 Challenge set-p1 and set-p2, as well as the MGH/MF Waveform Database. On the extended data set our algorithm is on par with the other top six submissions to the Physionet 2014 challenge.
Abstract:The parameters of temporal models, such as dynamic Bayesian networks, may be modelled in a Bayesian context as static or atemporal variables that influence transition probabilities at every time step. Particle filters fail for models that include such variables, while methods that use Gibbs sampling of parameter variables may incur a per-sample cost that grows linearly with the length of the observation sequence. Storvik devised a method for incremental computation of exact sufficient statistics that, for some cases, reduces the per-sample cost to a constant. In this paper, we demonstrate a connection between Storvik's filter and a Kalman filter in parameter space and establish more general conditions under which Storvik's filter works. Drawing on an analogy to the extended Kalman filter, we develop and analyze, both theoretically and experimentally, a Taylor approximation to the parameter posterior that allows Storvik's method to be applied to a broader class of models. Our experiments on both synthetic examples and real applications show improvement over existing methods.