Abstract:Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering. However, with sparse input views, the lack of multi-view consistency constraints results in poorly initialized point clouds and unreliable heuristics for optimization and densification, leading to suboptimal performance. Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images. Additionally, they rely on multi-view stereo (MVS)-based initialization, which limits the efficiency of scene representation. To overcome these challenges, we propose a view synthesis framework based on 3D Gaussian Splatting, named MCGS, enabling photorealistic scene reconstruction from sparse input views. The key innovations of MCGS in enhancing multi-view consistency are as follows: i) We introduce an initialization method by leveraging a sparse matcher combined with a random filling strategy, yielding a compact yet sufficient set of initial points. This approach enhances the initial geometry prior, promoting efficient scene representation. ii) We develop a multi-view consistency-guided progressive pruning strategy to refine the Gaussian field by strengthening consistency and eliminating low-contribution Gaussians. These modular, plug-and-play strategies enhance robustness to sparse input views, accelerate rendering, and reduce memory consumption, making MCGS a practical and efficient framework for 3D Gaussian Splatting.
Abstract:Neural Radiance Fields (NeRF) with hybrid representations have shown impressive capabilities in reconstructing scenes for view synthesis, delivering high efficiency. Nonetheless, their performance significantly drops with sparse view inputs, due to the issue of overfitting. While various regularization strategies have been devised to address these challenges, they often depend on inefficient assumptions or are not compatible with hybrid models. There is a clear need for a method that maintains efficiency and improves resilience to sparse views within a hybrid framework. In this paper, we introduce an accurate and efficient few-shot neural rendering method named Spatial Annealing smoothing regularized NeRF (SANeRF), which is specifically designed for a pre-filtering-driven hybrid representation architecture. We implement an exponential reduction of the sample space size from an initially large value. This methodology is crucial for stabilizing the early stages of the training phase and significantly contributes to the enhancement of the subsequent process of detail refinement. Our extensive experiments reveal that, by adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot NeRF methods. Notably, SANeRF outperforms FreeNeRF by 0.3 dB in PSNR on the Blender dataset, while achieving 700x faster reconstruction speed.
Abstract:Neural Radiance Field (NeRF) technology has made significant strides in creating novel viewpoints. However, its effectiveness is hampered when working with sparsely available views, often leading to performance dips due to overfitting. FreeNeRF attempts to overcome this limitation by integrating implicit geometry regularization, which incrementally improves both geometry and textures. Nonetheless, an initial low positional encoding bandwidth results in the exclusion of high-frequency elements. The quest for a holistic approach that simultaneously addresses overfitting and the preservation of high-frequency details remains ongoing. This study introduces a novel feature matching based sparse geometry regularization module. This module excels in pinpointing high-frequency keypoints, thereby safeguarding the integrity of fine details. Through progressive refinement of geometry and textures across NeRF iterations, we unveil an effective few-shot neural rendering architecture, designated as SGCNeRF, for enhanced novel view synthesis. Our experiments demonstrate that SGCNeRF not only achieves superior geometry-consistent outcomes but also surpasses FreeNeRF, with improvements of 0.7 dB and 0.6 dB in PSNR on the LLFF and DTU datasets, respectively.