Abstract:The anonymity of blockchain has accelerated the growth of illegal activities and criminal behaviors on cryptocurrency platforms. Although decentralization is one of the typical characteristics of blockchain, we urgently call for effective regulation to detect these illegal behaviors to ensure the safety and stability of user transactions. Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security. As a common tool, graph mining technique can effectively represent the interactive information between accounts and be used for identity inference. However, existing methods cannot balance scalability and end-to-end architecture, resulting high computational consumption and weak feature representation. In this paper, we present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern and effectively avoids computation in large-scale graph. Furthermore, we propose a generic end-to-end graph neural network model, named $\text{I}^2 \text{BGNN}$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity, achieving de-anonymization. Extensive experiments on EOSG and ETHG datasets demonstrate that the proposed method achieve the state-of-the-art performance in identity inference.
Abstract:With the wide application of blockchain in the financial field, the rise of various types of cybercrimes has brought great challenges to the security of blockchain. In order to better understand this emerging market and explore more efficient countermeasures for effective supervision, it is imperative to track transactions on blockchain-based systems. Due to the openness of Ethereum, we can easily access the publicly available transaction records, model them as a complex network, and further study the problem of transaction tracking via link prediction, which provides a deeper understanding of Ethereum transactions from a network perspective. Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW). By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model Ethereum transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records, which integrates temporal and amount information of the proposed network. Experimental results demonstrate the superiority of the proposed framework in learning more informative representations and could be an effective method for transaction tracking.