Abstract:Kriging aims at estimating the attributes of unsampled geo-locations from observations in the spatial vicinity or physical connections, which helps mitigate skewed monitoring caused by under-deployed sensors. Existing works assume that neighbors' information offers the basis for estimating the attributes of the unobserved target while ignoring non-neighbors. However, non-neighbors could also offer constructive information, and neighbors could also be misleading. To this end, we propose ``Contrastive-Prototypical'' self-supervised learning for Kriging (KCP) to refine valuable information from neighbors and recycle the one from non-neighbors. As a pre-trained paradigm, we conduct the Kriging task from a new perspective of representation: we aim to first learn robust and general representations and then recover attributes from representations. A neighboring contrastive module is designed that coarsely learns the representations by narrowing the representation distance between the target and its neighbors while pushing away the non-neighbors. In parallel, a prototypical module is introduced to identify similar representations via exchanged prediction, thus refining the misleading neighbors and recycling the useful non-neighbors from the neighboring contrast component. As a result, not all the neighbors and some of the non-neighbors will be used to infer the target. To encourage the two modules above to learn general and robust representations, we design an adaptive augmentation module that incorporates data-driven attribute augmentation and centrality-based topology augmentation over the spatiotemporal Kriging graph data. Extensive experiments on real-world datasets demonstrate the superior performance of KCP compared to its peers with 6% improvements and exceptional transferability and robustness. The code is available at https://github.com/bonaldli/KCP
Abstract:Trajectory recovery based on the snapshots from the city-wide multi-camera network facilitates urban mobility sensing and driveway optimization. The state-of-the-art solutions devoted to such a vision-based scheme typically incorporate predefined rules or unsupervised iterative feedback, struggling with multi-fold challenges such as lack of open-source datasets for training the whole pipeline, and the vulnerability to the noises from visual inputs. In response to the dilemma, this paper proposes VisionTraj, the first learning-based model that reconstructs vehicle trajectories from snapshots recorded by road network cameras. Coupled with it, we elaborate on two rational vision-trajectory datasets, which produce extensive trajectory data along with corresponding visual snapshots, enabling supervised vision-trajectory interplay extraction. Following the data creation, based on the results from the off-the-shelf multi-modal vehicle clustering, we first re-formulate the trajectory recovery problem as a generative task and introduce the canonical Transformer as the autoregressive backbone. Then, to identify clustering noises (e.g., false positives) with the bound on the snapshots' spatiotemporal dependencies, a GCN-based soft-denoising module is conducted based on the fine- and coarse-grained Re-ID clusters. Additionally, we harness strong semantic information extracted from the tracklet to provide detailed insights into the vehicle's entry and exit actions during trajectory recovery. The denoising and tracklet components can also act as plug-and-play modules to boost baselines. Experimental results on the two hand-crafted datasets show that the proposed VisionTraj achieves a maximum +11.5% improvement against the sub-best model.