Abstract:Point-supervised Temporal Action Localization (PTAL) adopts a lightly frame-annotated paradigm (\textit{i.e.}, labeling only a single frame per action instance) to train a model to effectively locate action instances within untrimmed videos. Most existing approaches design the task head of models with only a point-supervised snippet-level classification, without explicit modeling of understanding temporal relationships among frames of an action. However, understanding the temporal relationships of frames is crucial because it can help a model understand how an action is defined and therefore benefits localizing the full frames of an action. To this end, in this paper, we design a multi-task learning framework that fully utilizes point supervision to boost the model's temporal understanding capability for action localization. Specifically, we design three self-supervised temporal understanding tasks: (i) Action Completion, (ii) Action Order Understanding, and (iii) Action Regularity Understanding. These tasks help a model understand the temporal consistency of actions across videos. To the best of our knowledge, this is the first attempt to explicitly explore temporal consistency for point supervision action localization. Extensive experimental results on four benchmark datasets demonstrate the effectiveness of the proposed method compared to several state-of-the-art approaches.
Abstract:Recently, point-supervised temporal action localization has gained significant attention for its effective balance between labeling costs and localization accuracy. However, current methods only consider features from visual inputs, neglecting helpful semantic information from the text side. To address this issue, we propose a Text Refinement and Alignment (TRA) framework that effectively utilizes textual features from visual descriptions to complement the visual features as they are semantically rich. This is achieved by designing two new modules for the original point-supervised framework: a Point-based Text Refinement module (PTR) and a Point-based Multimodal Alignment module (PMA). Specifically, we first generate descriptions for video frames using a pre-trained multimodal model. Next, PTR refines the initial descriptions by leveraging point annotations together with multiple pre-trained models. PMA then projects all features into a unified semantic space and leverages a point-level multimodal feature contrastive learning to reduce the gap between visual and linguistic modalities. Last, the enhanced multi-modal features are fed into the action detector for precise localization. Extensive experimental results on five widely used benchmarks demonstrate the favorable performance of our proposed framework compared to several state-of-the-art methods. Moreover, our computational overhead analysis shows that the framework can run on a single 24 GB RTX 3090 GPU, indicating its practicality and scalability.
Abstract:Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.




Abstract:Despite the significant progress of fully-supervised video captioning, zero-shot methods remain much less explored. In this paper, we propose to take advantage of existing pre-trained large-scale vision and language models to directly generate captions with test time adaptation. Specifically, we bridge video and text using three key models: a general video understanding model XCLIP, a general image understanding model CLIP, and a text generation model GPT-2, due to their source-code availability. The main challenge is how to enable the text generation model to be sufficiently aware of the content in a given video so as to generate corresponding captions. To address this problem, we propose using learnable tokens as a communication medium between frozen GPT-2 and frozen XCLIP as well as frozen CLIP. Differing from the conventional way to train these tokens with training data, we update these tokens with pseudo-targets of the inference data under several carefully crafted loss functions which enable the tokens to absorb video information catered for GPT-2. This procedure can be done in just a few iterations (we use 16 iterations in the experiments) and does not require ground truth data. Extensive experimental results on three widely used datasets, MSR-VTT, MSVD, and VATEX, show 4% to 20% improvements in terms of the main metric CIDEr compared to the existing state-of-the-art methods.
Abstract:Describing video content according to users' needs is a long-held goal. Although existing video captioning methods have made significant progress, the generated captions may not focus on the entity that users are particularly interested in. To address this problem, we propose a new video captioning task, subject-oriented video captioning, which allows users to specify the describing target via a bounding box. To support this task, we construct two subject-oriented video captioning datasets based on two widely used video captioning datasets: MSVD and MSRVTT, by annotating subjects in each video for each caption. These datasets pave the way for future technique development. As the first attempt, we evaluate four state-of-the-art general video captioning models, and have observed a large performance drop. We then explore several strategies to enable them to describe the desired target. Experimental results show obvious improvement, but there is still a large room for further exploration in this field.