Abstract:Despite the significant progress of fully-supervised video captioning, zero-shot methods remain much less explored. In this paper, we propose to take advantage of existing pre-trained large-scale vision and language models to directly generate captions with test time adaptation. Specifically, we bridge video and text using three key models: a general video understanding model XCLIP, a general image understanding model CLIP, and a text generation model GPT-2, due to their source-code availability. The main challenge is how to enable the text generation model to be sufficiently aware of the content in a given video so as to generate corresponding captions. To address this problem, we propose using learnable tokens as a communication medium between frozen GPT-2 and frozen XCLIP as well as frozen CLIP. Differing from the conventional way to train these tokens with training data, we update these tokens with pseudo-targets of the inference data under several carefully crafted loss functions which enable the tokens to absorb video information catered for GPT-2. This procedure can be done in just a few iterations (we use 16 iterations in the experiments) and does not require ground truth data. Extensive experimental results on three widely used datasets, MSR-VTT, MSVD, and VATEX, show 4% to 20% improvements in terms of the main metric CIDEr compared to the existing state-of-the-art methods.
Abstract:Describing video content according to users' needs is a long-held goal. Although existing video captioning methods have made significant progress, the generated captions may not focus on the entity that users are particularly interested in. To address this problem, we propose a new video captioning task, subject-oriented video captioning, which allows users to specify the describing target via a bounding box. To support this task, we construct two subject-oriented video captioning datasets based on two widely used video captioning datasets: MSVD and MSRVTT, by annotating subjects in each video for each caption. These datasets pave the way for future technique development. As the first attempt, we evaluate four state-of-the-art general video captioning models, and have observed a large performance drop. We then explore several strategies to enable them to describe the desired target. Experimental results show obvious improvement, but there is still a large room for further exploration in this field.