Abstract:Benefited from the deep learning, image Super-Resolution has been one of the most developing research fields in computer vision. Depending upon whether using a discriminator or not, a deep convolutional neural network can provide an image with high fidelity or better perceptual quality. Due to the lack of ground truth images in real life, people prefer a photo-realistic image with low fidelity to a blurry image with high fidelity. In this paper, we revisit the classic example based image super-resolution approaches and come up with a novel generative model for perceptual image super-resolution. Given that real images contain various noise and artifacts, we propose a joint image denoising and super-resolution model via Variational AutoEncoder. We come up with a conditional variational autoencoder to encode the reference for dense feature vector which can then be transferred to the decoder for target image denoising. With the aid of the discriminator, an additional overhead of super-resolution subnetwork is attached to super-resolve the denoised image with photo-realistic visual quality. We participated the NTIRE2020 Real Image Super-Resolution Challenge. Experimental results show that by using the proposed approach, we can obtain enlarged images with clean and pleasant features compared to other supervised methods. We also compared our approach with state-of-the-art methods on various datasets to demonstrate the efficiency of our proposed unsupervised super-resolution model.
Abstract:Deep learning based image Super-Resolution (SR) has shown rapid development due to its ability of big data digestion. Generally, deeper and wider networks can extract richer feature maps and generate SR images with remarkable quality. However, the more complex network we have, the more time consumption is required for practical applications. It is important to have a simplified network for efficient image SR. In this paper, we propose an Attention based Back Projection Network (ABPN) for image super-resolution. Similar to some recent works, we believe that the back projection mechanism can be further developed for SR. Enhanced back projection blocks are suggested to iteratively update low- and high-resolution feature residues. Inspired by recent studies on attention models, we propose a Spatial Attention Block (SAB) to learn the cross-correlation across features at different layers. Based on the assumption that a good SR image should be close to the original LR image after down-sampling. We propose a Refined Back Projection Block (RBPB) for final reconstruction. Extensive experiments on some public and AIM2019 Image Super-Resolution Challenge datasets show that the proposed ABPN can provide state-of-the-art or even better performance in both quantitative and qualitative measurements.