Abstract:While question answering over knowledge bases (KBQA) has shown progress in addressing factoid questions, KBQA with numerical reasoning remains relatively unexplored. In this paper, we focus on the complex numerical reasoning in KBQA and propose a new task, NR-KBQA, which necessitates the ability to perform both multi-hop reasoning and numerical reasoning. We design a logic form in Python format called PyQL to represent the reasoning process of numerical reasoning questions. To facilitate the development of NR-KBQA, we present a large dataset called MarkQA, which is automatically constructed from a small set of seeds. Each question in MarkQA is equipped with its corresponding SPARQL query, alongside the step-by-step reasoning process in the QDMR format and PyQL program. Experimental results of some state-of-the-art QA methods on the MarkQA show that complex numerical reasoning in KBQA faces great challenges.
Abstract:Knowledge base question answering (KBQA) has attracted a lot of interest in recent years, especially for complex questions which require multiple facts to answer. Question decomposition is a promising way to answer complex questions. Existing decomposition methods split the question into sub-questions according to a single compositionality type, which is not sufficient for questions involving multiple compositionality types. In this paper, we propose Question Decomposition Tree (QDT) to represent the structure of complex questions. Inspired by recent advances in natural language generation (NLG), we present a two-staged method called Clue-Decipher to generate QDT. It can leverage the strong ability of NLG model and simultaneously preserve the original questions. To verify that QDT can enhance KBQA task, we design a decomposition-based KBQA system called QDTQA. Extensive experiments show that QDTQA outperforms previous state-of-the-art methods on ComplexWebQuestions dataset. Besides, our decomposition method improves an existing KBQA system by 12% and sets a new state-of-the-art on LC-QuAD 1.0.