Abstract:In this letter, we propose a color-assisted robust framework for accurate LiDAR odometry and mapping (LOAM). Simultaneously receiving data from both the LiDAR and the camera, the framework utilizes the color information from the camera images to colorize the LiDAR point clouds and then performs iterative pose optimization. For each LiDAR scan, the edge and planar features are extracted and colored using the corresponding image and then matched to a global map. Specifically, we adopt a perceptually uniform color difference weighting strategy to exclude color correspondence outliers and a robust error metric based on the Welsch's function to mitigate the impact of positional correspondence outliers during the pose optimization process. As a result, the system achieves accurate localization and reconstructs dense, accurate, colored and three-dimensional (3D) maps of the environment. Thorough experiments with challenging scenarios, including complex forests and a campus, show that our method provides higher robustness and accuracy compared with current state-of-the-art methods.
Abstract:Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
Abstract:We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. Project page: https://li-yuetao.github.io/ActiveSplat/.