Abstract:Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
Abstract:We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. Project page: https://li-yuetao.github.io/ActiveSplat/.