Abstract:Autonomous high-fidelity object reconstruction is fundamental for creating digital assets and bridging the simulation-to-reality gap in robotics. We present ObjSplat, an active reconstruction framework that leverages Gaussian surfels as a unified representation to progressively reconstruct unknown objects with both photorealistic appearance and accurate geometry. Addressing the limitations of conventional opacity or depth-based cues, we introduce a geometry-aware viewpoint evaluation pipeline that explicitly models back-face visibility and occlusion-aware multi-view covisibility, reliably identifying under-reconstructed regions even on geometrically complex objects. Furthermore, to overcome the limitations of greedy planning strategies, ObjSplat employs a next-best-path (NBP) planner that performs multi-step lookahead on a dynamically constructed spatial graph. By jointly optimizing information gain and movement cost, this planner generates globally efficient trajectories. Extensive experiments in simulation and on real-world cultural artifacts demonstrate that ObjSplat produces physically consistent models within minutes, achieving superior reconstruction fidelity and surface completeness while significantly reducing scan time and path length compared to state-of-the-art approaches. Project page: https://li-yuetao.github.io/ObjSplat-page/ .




Abstract:In this letter, we propose a color-assisted robust framework for accurate LiDAR odometry and mapping (LOAM). Simultaneously receiving data from both the LiDAR and the camera, the framework utilizes the color information from the camera images to colorize the LiDAR point clouds and then performs iterative pose optimization. For each LiDAR scan, the edge and planar features are extracted and colored using the corresponding image and then matched to a global map. Specifically, we adopt a perceptually uniform color difference weighting strategy to exclude color correspondence outliers and a robust error metric based on the Welsch's function to mitigate the impact of positional correspondence outliers during the pose optimization process. As a result, the system achieves accurate localization and reconstructs dense, accurate, colored and three-dimensional (3D) maps of the environment. Thorough experiments with challenging scenarios, including complex forests and a campus, show that our method provides higher robustness and accuracy compared with current state-of-the-art methods.




Abstract:Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.




Abstract:Efficiently and completely capturing the three-dimensional data of an object is a fundamental problem in industrial and robotic applications. The task of next-best-view (NBV) planning is to infer the pose of the next viewpoint based on the current data, and gradually realize the complete three-dimensional reconstruction. Many existing algorithms, however, suffer a large computational burden due to the use of ray-casting. To address this, this paper proposes a projection-based NBV planning framework. It can select the next best view at an extremely fast speed while ensuring the complete scanning of the object. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure.Then, the next best view is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces the ray-casting in voxel structures, significantly improving the computational efficiency. Comparative experiments with other algorithms in a simulation environment show that the framework proposed in this paper can achieve 10 times efficiency improvement on the basis of capturing roughly the same coverage. The real-world experimental results also prove the efficiency and feasibility of the framework.