Abstract:Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
Abstract:Efficiently and completely capturing the three-dimensional data of an object is a fundamental problem in industrial and robotic applications. The task of next-best-view (NBV) planning is to infer the pose of the next viewpoint based on the current data, and gradually realize the complete three-dimensional reconstruction. Many existing algorithms, however, suffer a large computational burden due to the use of ray-casting. To address this, this paper proposes a projection-based NBV planning framework. It can select the next best view at an extremely fast speed while ensuring the complete scanning of the object. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure.Then, the next best view is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces the ray-casting in voxel structures, significantly improving the computational efficiency. Comparative experiments with other algorithms in a simulation environment show that the framework proposed in this paper can achieve 10 times efficiency improvement on the basis of capturing roughly the same coverage. The real-world experimental results also prove the efficiency and feasibility of the framework.