Abstract:We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. Project page: https://li-yuetao.github.io/ActiveSplat/.
Abstract:We introduce a NeRF-based active mapping system that enables efficient and robust exploration of large-scale indoor environments. The key to our approach is the extraction of a generalized Voronoi graph (GVG) from the continually updated neural map, leading to the synergistic integration of scene geometry, appearance, topology, and uncertainty. Anchoring uncertain areas induced by the neural map to the vertices of GVG allows the exploration to undergo adaptive granularity along a safe path that traverses unknown areas efficiently. Harnessing a modern hybrid NeRF representation, the proposed system achieves competitive results in terms of reconstruction accuracy, coverage completeness, and exploration efficiency even when scaling up to large indoor environments. Extensive results at different scales validate the efficacy of the proposed system.