Abstract:We study the problem of generating point clouds of 3D objects. Instead of discretizing the object into 3D voxels with huge computational cost and resolution limitations, we propose a novel geometry image based generator (GIG) to convert the 3D point cloud generation problem to a 2D geometry image generation problem. Since the geometry image is a completely regular 2D array that contains the surface points of the 3D object, it leverages both the regularity of the 2D array and the geodesic neighborhood of the 3D surface. Thus, one significant benefit of our GIG is that it allows us to directly generate the 3D point clouds using efficient 2D image generation networks. Experiments on both rigid and non-rigid 3D object datasets have demonstrated the promising performance of our method to not only create plausible and novel 3D objects, but also learn a probabilistic latent space that well supports the shape editing like interpolation and arithmetic.
Abstract:Timely, accurate and automatic detection of pavement cracks is necessary for making cost-effective decisions concerning road maintenance. Conventional crack detection algorithms focus on the design of single or multiple crack features and classifiers. However, complicated topological structures, varying degrees of damage and oil stains make the design of crack features difficult. In addition, the contextual information around a crack is not investigated extensively in the design process. Accordingly, these design features have limited discriminative adaptability and cannot fuse effectively with the classifiers. To solve these problems, this paper proposes a deep learning network for pavement crack detection. Using the Encoder-Decoder structure, crack characteristics with multiple contexts are automatically learned, and end-to-end crack detection is achieved. Specifically, we first propose the Multi-Dilation (MD) module, which can synthesize the crack features of multiple context sizes via dilated convolution with multiple rates. The crack MD features obtained in this module can describe cracks of different widths and topologies. Next, we propose the SE-Upsampling (SEU) module, which uses the Squeeze-and-Excitation learning operation to optimize the MD features. Finally, the above two modules are integrated to develop the fast crack detection network, namely, FPCNet. This network continuously optimizes the MD features step-by-step to realize fast pixel-level crack detection. Experiments are conducted on challenging public CFD datasets and G45 crack datasets involving various crack types under different shooting conditions. The distinct performance and speed improvements over all the datasets demonstrate that the proposed method outperforms other state-of-the-art crack detection methods.