Abstract:We present an algorithm that learns a coarse 3D representation of objects from unposed multi-view 2D mask supervision, then uses it to generate detailed mask and image texture. In contrast to existing voxel-based methods for unposed object reconstruction, our approach learns to represent the generated shape and pose with a set of self-supervised canonical 3D anisotropic Gaussians via a perspective camera, and a set of per-image transforms. We show that this approach can robustly estimate a 3D space for the camera and object, while recent baselines sometimes struggle to reconstruct coherent 3D spaces in this setting. We show results on synthetic datasets with realistic lighting, and demonstrate object insertion with interactive posing. With our work, we help move towards structured representations that handle more real-world variation in learning-based object reconstruction.
Abstract:Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms that are jointly adversarialy trained with the generators and discriminators. We demonstrate qualitatively and quantitatively that our approach is able to attend to relevant regions in the image without requiring supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.